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To improve the checkpoint bandwidth of critical applications at LANL we developed the Parallel Log 
Structured File System (PLFS)[1]. PLFS is a transformative I/O middleware layer placed within our 
software stack that transparently rearranges a challenging workload, a concurrently written single 
shared file, into an optimized workload, non concurrently written non-shared component pieces. This 
reorganized I/O has made write size a non-issue and improved checkpoint performance by orders 
of magnitude measured to be as much as 150x with improvements in write, read, and meta data 
performance of our I/O workloads. Under a CRADA with EMC Corporation, LANL and EMC have 
successfully demonstrated a prototype “burst buffer” and are working together to further enhance, 
design, build, test, and deploy PLFS. Future work for PLFS includes integration with the Scalable 
Checkpoint/Restart (SCR) Library, further improving metadata rates, and capturing semantic information 
about the data streams.

The original architecture of the Parallel Log Structured File System 
(PLFS) was heavily write optimized and limited read performance. 

We quickly noticed that with increasing process counts our effective 
read bandwidth was suffering due to read open times so we developed 
several techniques to address this problem (Fig 1), which are to 
aggregate the global index on

•	 read open with one process and broadcast this result to every other 
process (Index Broadcast);

•	write close, and on read open broadcast the results of the aggregation 
from one process to all processes (Index Flatten); and

•	 read open leveraging all processes (Parallel Index Read).

All three share the common property of reducing the number of 
input/output (I/O) operations that must be conducted by the parallel 
file system. During a checkpoint read the compute and high speed 
interconnect resources of cluster machines are largely idle. Our 
solutions leverage both of these resources and to some degree reduce 

the amount of concurrent access to files as 
compared to the original design of PLFS. 
Bandwidth improvements and faster open and 
close times are realized with all three methods 
(Fig. 2). 

Metadata management is a difficult challenge 
for many current parallel file systems. As 

we move into exascale-class computing, compute systems will have 
increased component counts which will increase metadata workloads, 
exacerbating the metadata challenges that we currently face. The 
flexibility granted by the PLFS layer allows us to alleviate metadata 
challenges by spreading the I/O workload over multiple physical 
locations (hashing), turning independent metadata servers into a 
federated system of servers which improces metadata performance 
(Fig. 3), and spreading workloads over multiple directories solving 
the problem of massive-scale file creation in single directories. This 
increased metadata performance has been demonstrated across two 
classes of workloads that together represent the checkpoint point I/O 
patterns of a large class of applications.

The promising effectiveness and flexibility of PLFS has made it 
necessary to develop PLFS into production software; a regression test 
suite and quality assurance (QA) procedures have led to improvements 
in robustness, performance (including archiving and restarting with 
varying number of processors), and new features. PLFS is in the process 
of being deployed on current production systems and our plans for 
exascale I/O include the use of PLFS. 

Recently, LANL announced the signing of a new umbrella CRADA 
with EMC Corporation. As part of this CRADA, LANL and EMC are 
working together to enhance, design, build, test, and deploy PLFS. 
This collaboration is focused on support for the Department of Energy’s 
exascale initiative and other data-intensive programs, and is aimed 
at boosting high-performance computing capability to ensure efficient 

Fig. 1. Index Aggregation Techniques. 
The figures below represent the 
workloads generated on the parallel 
file system and cluster interconnect by 
PLFS using the original design and 
our three solutions to improve the read 
bandwidth of PLFS.
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resource utilization on the largest 
supercomputers in the world.

The first deliverable for this CRADA 
was the demonstration at the 2011 
Supercomputing Conference of a 
prototype “burst-buffer” storage 
stack (Fig. 4). Economic projections 
into the exascale era dictate that the 
storage stack be re-engineered to 

incorporate an intermediary layer between the compute nodes and the 
disk-based scratch storage space. This prototype burst-buffer system 
was a surprisingly effective exploration within this new architectural 
space. By accomplishing a complicated integration of both new hardware 
and software elements in a very short timeframe, LANL and EMC 
demonstrated their ability to work together closely and effectively.

Using a wind-turbine simulation and visualization workload, the 
demonstration showed much faster data dump times as well as the 
ability to co-process the visualization with the simulation, as opposed to 
the current post-processing model. The very encouraging performance 
results of this demonstration were of great interest to the community 
and necessitate more investigation of the burst-buffer concept for 
exascale computing.

The PLFS project is now looking to further improve metadata rates. 
Large metadata workloads are created both by user N-N workloads 
and also by PLFS as it transforms user N-1 workloads. For an exascale 

system, metadata ingest rates will become a horrible 
bottleneck as N approaches one billion. Current efforts 
are ongoing to aggregate multiple logical users’ files into 
a smaller number of physical files to reduce the metadata 
burden. In addition, the internal PLFS metadata architecture 
is currently being re-engineered for exascale workloads. One 
method currently being explored is to use the speed of the 
compute interconnect workload to shuffle small amounts of 
data to transform per-process heterogeneous workloads into 
homogenous ones. This regularity will allow a huge reduction 
of PLFS’s internal metadata.

As part of a tri-lab effort, PLFS is currently being integrated 
with Scalable Checkpoint/Restart (SCR) [2], a checkpoint 
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Fig. 3. Graphs of results from a 
hashed metadata study. In most cases, 
multiple metadata servers (hashing) 
dramatically improve file open time. 
Note that smaller open times are better, 
so lower lines are better performing for 
these graphs.

in-memory system for N-N codes 
developed at LLNL.

Finally, the most ambitious and 
important PLFS project currently 
ongoing is to capture semantic 
information about the data streams. This 
will allow PLFS to know not just where 
data is stored but what data is stored 
where. With this knowledge, analysis 
and visualization workloads can query 
high-level semantic data knowledge and 
avoid costly data filtering which can 
reduce the amount of data read by orders 
of magnitude. This outcome is related to 
active storage projects in the past and 
can enable scientific workloads to  
benefit from programming models 
similar to map-reduce.

PLFS is open source software  
available from  
http://sourceforge.net/projects/plfs

Fig. 2. The graph on the left illustrates 
the time taken to aggregate the global 
index of a PLFS file with lower times 
representing better performance. Note: 
the write close times are included in 
the graph because the Index Flatten 
technique aggregates the global index 
on the close of a newly written file. 
The graph on the right illustrates 
the effective read bandwidth of the 
original PLFS design and our read 
optimizations. Fig. 4. Graphs of prototype “burst-

buffer” demonstration at the 2011 
Supercomputing Conference show much 
faster data dump times as well as the 
ability to co-process the visualization 
with the simulation (bottom graph), as 
opposed to the current post-processing 
model (top graph).
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